Interface Analysis of Complex Oxide Ceramics in Electrolyte Supported Solid Oxide Fuel Cell

نویسندگان

  • G. Wetzel
  • T. Darroudi
  • O. Dillon
  • J. J. Clarke
چکیده

Solid Oxide Fuel Cells (SOFC) offer electrochemically generated sources of electricity using oxygen ion transport at elevated temperatures. Analysis of materials used in SOFC using electron microscopy provides insights of foreseeable chemical reactions that govern the performance of the fuel cell. Materials used in SOFC can be divided into four categories; anode, cathode, electrolyte and interconnects/sealants. Materials at anode satisfy the requirement of either pure electronic conduction or appropriate balance of mixed electronic/ionic conduction. The electrolyte is an oxide ceramic material with fluorite structure and a typical combination of group 4 transition metal and oxygen. The oxygen vacancies in fluorite oxide structure can be increased by replacing group 4 element with a transition metal (with matching ionic radii) either from group 3 or lanthanoids category. Cathode is composed of perovskite oxide ceramic structure with ABO3 configuration. Oxygen vacancies can be created by doping group 2 element with 2+ valence state (and matching ionic radii) at A or B site. The oxygen vacancies at cathode promote oxygen intake and mobility at high temperatures. To avoid direct gas mixing of hydrogen and oxygen at high temperatures, anode and cathode are isolated during active fuel cell operation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanostructuring Platinum Nanoparticles on Ni/Ce0.8Gd0.2O2-δ Anode for Low Temperature Solid Oxide Fuel Cell via Single-step Infiltration: A Case Study

With the aim of promoting the Ni/Ce0.8Gd0.2O2-δ (Ni/GDC20) cermet anodic performance of low temperature solid oxide fuel cell (LT-SOFC) [1], nanostructuring platinum nanoparticles on NiO/GDC composite was done by single-step wet-infiltration of hexachloroplatinic acid hexahydrate (H2PtCl6.6H2O) precursor on NiO/GDC20 composite. The anodic polarization resistance was measured using symmetr...

متن کامل

Three-dimensional modeling of transport phenomena in a planar anode-supported solid oxide fuel cell

In this article three dimensional modeling of a planar solid oxide fuel cell (SOFC) was investigated. The main objective was to attain the optimized cell operation. SOFC operation simulation involves a large number of parameters,   complicated equations, (mostly partial differential equations), and a sophisticated simulation technique; hence, a finite element method (FEM) multiphysics approach ...

متن کامل

EFFECT OF RHODIUM INFILTRATION ON THE MICROSTRUCTURE AND PERFORMANCE OF Ni/Ce0.8Gd0.2O2-δ CERMET ANODE FOR LOW TEMPERATURE SOLID OXIDE FUEL CELL

In order to further enhance the Ni/Ce 0.8Gd0.2O2-δ (Ni/GDC20) cermet anodic performance for low temperature solid oxide fuel cell (LT-SOFC), a study was conducted on the nanostructuring of NiO/GDC composite by only once wet-infiltration of rhodium chloride precursor. By using electrochemical impedance spectroscopy (EIS) analysis, the effect of only one drop of Rh-infiltrating solution on ...

متن کامل

Ink-jet Printing of Electrolyte and Anode Functional Layer for Solid Oxide Fuel Cells (postprint)

In thiswork, solid oxide fu to study the resulting mi revealed a highly conform anode-interlayer. Open ci 0.175Wcm−2 was achieve used to fabricate stable S ceramics processing meth impact on cell performanc

متن کامل

Performance modeling and parametric investigation of a solid oxide fuel cell (SOFC)

In his paper, performance modeling and parametric study of a tubular solid oxide fuel cell (SOFC) fed by hydrogen was conducted. The components of the fuel cell system and its reactions were entirely modelled and an electrochemical analysis done for it. A variety of modeling parameters including temperature, working pressure and the air mass- flow rate have been investigated in order to observe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014